
Introduction to Filters
• A filter is a frequency selective device. It allows certain 

frequencies to pass almost without attenuation while it 
suppresses other frequencies.

• Filters are an integral part of any communication system

Ideal Filters

Ideal low pass filter

• 𝐻 𝑓 = ቊ𝑘 𝑒
−𝑗2𝜋𝑓𝑡𝑑 |𝑓| < 𝐵

0 𝑜.𝑤
; B is the bandwidth

• The transfer function satisfies the condition for the 
distortion-less transmission (constant channel gain and 
linear phase shift with negative slope)

• ℎ 𝑡 = 2𝐵𝑘 𝑠𝑖𝑛𝑐2𝐵(𝑡 − 𝑡𝑑)

• Since h(t) is the response to an impulse applied at  t=0, 
and because h(t) has nonzero values for t < 0 , the filter is 
non-causal (physically non realizable).

Passband

Stopband



Filters and Filtering

Ideal band-pass filter

• 𝐻 𝑓 = ቊ𝑘 𝑒
−𝑗2𝜋𝑓𝑡𝑑 𝑓𝑙 < |𝑓| < 𝑓𝑢
0 𝑜. 𝑤

• Filer bandwidth  B = fu ─ fl; difference 
between upper and lower positive 
frequencies

• 𝑓𝑐 =
𝑓𝑢+𝑓𝑙

2
; Center frequency of the filter

impulse response:

• ℎ 𝑡 = 2𝐵𝑘 𝑠𝑖𝑛𝑐𝐵 𝑡 − 𝑡𝑑 𝑐𝑜𝑠 𝑤𝑐(𝑡 − 𝑡𝑑)

Passband

Stopband



Filters and Filtering

Band rejection or notch filter

• 𝐻 𝑓 = ቊ
𝑘 𝑒−𝑗2𝜋𝑓𝑡𝑑 𝑜. 𝑤
0 𝑓1 < |𝑓| < 𝑓2

.

High-pass filter 

• 𝐻 𝑓 = ቊ𝑘 𝑒
−𝑗2𝜋𝑓𝑡𝑑 |𝑓| > 𝐵

0 𝑜.𝑤

- -

-

Passband

Stopband

Stopband

Passband



Real filters

• Ideal filter do not exist in practice, but are 
used to simplify the analysis of the system

• For a real filter, there are three frequency 
bands
• Passband

• Transition band

• Stopband (rejection)

• There are several specifications that dictate 
the filter order
• The passband edge frequency and the 

maximum allowable attenuation (ripple) within 
the passband

• The 3-dB cutoff frequency.

• The minimum required attenuation at the edge 
of the stopband and the desired stopband 
frequency.

Example: Let B be the 3-dB bandwidth
• - 1dB at f = 0.9 B, 
• -30 dB at f = 1.6 B
• The designer then finds the order of the 

filter that meets these specifications and 
then realizes that filter.



Real filters
• Here, we consider Butterworth low pass filters. The transfer function of a low 

pass Butterworth filter is of the form:

• 𝐻 𝑓 =
1

𝑃𝑛
𝑗𝑓

𝐵

• B is the 3-dB bandwidth of the filter and 𝑃𝑛
𝑗𝑓

𝐵
is a complex polynomial of 

order n. The family of Butterworth polynomials is defined by the property

• |𝑃𝑛
𝑗𝑓

𝐵
|
2
= 1 +

𝑓

𝐵

2𝑛
. 

• Therefore, 𝐻 𝑓 =
1

1+
𝑓

𝐵

2𝑛

• The first few polynomials are:

• 𝑃1 𝑥 = 1 + 𝑥;  𝑃2 𝑥 = 1 + 2𝑥 + 𝑥2;  𝑃3 𝑥 = 1 + 𝑥 (1 + 𝑥 + 𝑥2)



Filters and Filtering

A first order LPF

• 𝐻 𝑓 =
1

𝑃1
𝑗𝑓

𝐵

=
1

1+𝑗𝑓/𝐵
=

1

𝑃1(𝑗𝑓/𝐵)
;   𝑃1 𝑥 = 1 + 𝑥

• 𝐻 𝑓 =

1

𝑗2𝜋𝑓𝑐

𝑅+
1

𝑗2𝜋𝑓𝑐

• Let 𝐵 =
1

2𝜋𝑅𝐶
; 𝐻 𝑓 =

1

1+𝑗𝑓/𝐵

• Note: In this filter, there is only one energy storage element 



Filters and Filtering

A second order LPF

• 𝐻 𝑓 =
1

1+
𝑗𝑤𝐿

𝑅
− 2𝜋 𝐿𝐶𝑓

2

• Let 𝑅 =
𝐿

2𝐶
;   𝑩 =

𝟏

𝟐𝝅 𝑳𝑪

• 𝐻 𝑓 =
1

1+ 2(
𝑗𝑓

𝐵
)− 𝑓/𝐵 2

• 𝐻 𝑓 =
1

𝑃2(𝑗𝑓/𝐵)
;    𝑃2 𝑥 = 1 + 2𝑥 + 𝑥2

• Note: In this filter, there are two energy storage element



Butterworth Low-pass Filters: Frequency Response and Filter Order 

• B: is the 3-dB frequency at which the 
magnitude drops to 0.707 of the 
maximum value.

• Let the maximum allowable 
attenuation in the passband be 0.1 
and the maximum gain within the 
stopband be 0.1. 

• 𝐻1 𝑓 =
1

1+𝑗𝑓/𝐵

• Passband:

• Transition band:

• 𝐻2 𝑓 =
1

1+𝑗 2𝑓/𝐵− 𝑓/𝐵 2

• Passband: 

• Transition band:

• As the filter order increases, both of 
its pass-band and stop-band 
capabilities improve. 𝒇/𝑩𝑩



A second order BPF

• The figure shows a band-pass filter. Its transfer function is

𝐻 𝑓 =

𝑗𝜔
𝑅𝐶

𝑗𝜔 2 +
𝑗𝜔
𝑅𝐶

+ 1/𝐿𝐶
=

𝜔0
𝑄
(𝑗𝜔)

𝑗𝜔 2 +
𝜔0
𝑄
(𝑗𝜔) + 𝜔0

2

• 𝜔0 = 2𝜋(
1

2𝜋 𝐿𝐶
) ; 𝑓0: Resonance frequency

• 𝑄 = 𝜔0 𝑅𝐶 =
𝑅

𝜔0 𝐶
;  Quality factor which determines the 

sharpness of the resonance. 

• Bandwidth is inversely proportional to Q

• 𝐐 =
𝒇𝟎

𝑩.𝑾
; Higher Q provides higher  selectivity 

• For the shown characteristic, Q = 1MHz/200KHz = 5



Other practical second order filters

Second order 
band-stop filter

Second order 
high-pass filter



Hilbert Transform

• The quadrature filter is an all pass filter 
that shifts the phase of positive 
frequency by (-90°) and negative 
frequency by (+90°).

• The transfer function of such a filter is

• 𝐻 𝑓 = ቊ
−𝑗 𝑓 > 0
𝑗 𝑓 < 0

= −𝒋𝒔𝒈𝒏 𝒇

• Note that 𝐻 𝑓 = 1 for all f.

• Using the duality property of Fourier 
transform, the impulse response of the 
filter is 𝒉 𝒕 =

𝟏

𝝅𝒕
(ℑ 𝑠𝑔𝑛 𝑡 =

1

𝑗𝜋𝑓
)

• The Hilbert transform is the output of 
the quadrature filter to the signal 𝑔 𝑡

• ෝ𝒈 𝒕 =
𝟏

𝝅𝒕
∗ 𝒈(𝒕) ∞−׬  =

∞ 𝑔( λ)

𝜋(𝑡− λ)
𝑑 λ

• Note that the Hilbert transform of a signal 
is a function of time (not frequency as in 
the case of the Fourier transform). The 
Fourier transform of ො𝑔(𝑡)

• ෡𝑮 𝒇 = −𝒋𝒔𝒈𝒏 𝒇 𝑮(𝒇)

• Hilbert transform can be found using 
either the time domain approach or the 
frequency domain approach depending on 
the given problem. That is

• Time-domain: Perform the convolution
1

𝜋𝑡
∗ 𝑔(𝑡).

• Frequency-domain: Find the Fourier 
transform ෠𝐺 𝑓 , then find the inverse 
Fourier transform

• ො𝑔 𝑡 = ∞−׬
∞ ෠𝐺 𝑓 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓

1



Some properties of the Hilbert transform

• A signal 𝑔(𝑡) and its Hilbert transform ො𝑔(𝑡) have the same energy spectral 
density

• ෠𝐺 𝑓
2
= −𝑗 𝑠𝑔𝑛 𝑓 𝐺 𝑓 |2 = −𝑗 𝑠𝑔𝑛 𝑓 2 𝐺 𝑓 |2

• = |𝐺(𝑓)|2

The consequences of this property are:

• If a signal g(t) is bandlimited to a bandwidth W Hz, then  ො𝑔(𝑡) is bandlimited  
to the same bandwidth (note that  ෠𝐺 𝑓 = |𝐺 𝑓 |)

• ො𝑔(𝑡) and 𝑔(𝑡) have the same total energy (or power). 𝐸 = ∞−׬
∞

|𝐺 𝑓 |2𝑑𝑓

• ො𝑔(𝑡) and 𝑔(𝑡) have the same autocorrelation function (in the next lecture, we 
will see that the autocorrelation function and the energy spectral density form 
a Fourier transform pair 𝑅𝑔(𝜏) ↔ |𝐺(𝑓)|2)

2



Some properties of the Hilbert transform

• A signal g(t) and ො𝑔 𝑡 are orthogonal, i.e., ׬−∞
∞

g t ො𝑔 𝑡 𝑑𝑡 = 0

• This property can be verified using the general formula of Rayleigh energy theorem

• ∞−׬
∞

g t ො𝑔 𝑡 𝑑𝑡 = ∞−׬
∞

G f ෠𝐺∗ 𝑓 𝑑𝑓 ∞−׬=
∞

G f {−𝑗𝑠𝑔𝑛 𝑓 𝐺 𝑓 }∗𝑑𝑓

= ∞−׬
∞

𝑗𝑠𝑔𝑛 𝑓 |𝐺 𝑓 |2𝑑𝑓 = 0.

• The result above follows from the fact that |𝐺 𝑓 |2 is an even function of 𝑓 while 𝑠𝑔𝑛 𝑓 is 
an odd function of 𝑓. Their product is odd. The integration of an odd function over a 
symmetrical interval is zero.

• If ො𝑔 𝑡 is a Hilbert transform of 𝑔(𝑡), then the Hilbert transform of ො𝑔 𝑡 is −𝑔(𝑡) (each 
Hilbert transform introduces 90 degrees phase shift).

3



Example on Hilbert transform

Example: Find the Hilbert transform of the impulse function 𝑔 𝑡 = 𝛿(𝑡)

Solution: Here, we use the convolution in the time domain

• ො𝑔 𝑡 =
1

𝜋𝑡
∗ 𝛿(𝑡)

• As we know, the convolution of the delta function with a continuous function 
is the function itself. Therefore,

• ො𝑔 𝑡 =
1

𝜋𝑡
.

4



Example on Hilbert transform

Example: Find the Hilbert transform of 𝑔 𝑡 = cos(2𝜋𝑓0𝑡)

Solution: Here, we use the frequency domain approach

• ෠𝐺 𝑓 = −𝑗𝑠𝑔𝑛 𝑓 𝐺 𝑓 = −
𝑗𝑠𝑔𝑛 𝑓 𝛿 𝑓−𝑓0 +𝛿 𝑓+𝑓0

2

• ෠𝐺 𝑓 = −𝑗𝑠𝑔𝑛 𝑓 𝐺 𝑓 =
𝑠𝑔𝑛 𝑓 𝛿 𝑓−𝑓0 +𝛿 𝑓+𝑓0

𝑗2
=

𝛿 𝑓−𝑓0 −𝛿 𝑓+𝑓0

𝑗2

• ො𝑔 𝑡 = sin(2𝜋𝑓0𝑡)

5



Example on Hilbert transform

• Find the Hilbert transform of  𝑔 𝑡 =
sin 𝑡

𝑡

• Solution: Here, we will first find the Fourier 
transform of 𝑔 𝑡 , find ෠𝐺 𝑓 , and then find 
ො𝑔(𝑡): 

• 𝐴 𝑟𝑒𝑐𝑡
𝑡

𝜏
↔ 𝐴𝜏 𝑠𝑖𝑛𝑐 𝑓𝜏 ; 𝜏 =

1

𝜋

• 𝐴 rect
𝑡

1/𝜋
↔ 𝐴

1

𝜋

sin 𝜋𝑓𝜏

𝜋𝑓𝜏
=

1

𝜋

sin 𝑓

𝑓

• 𝜋 𝑟𝑒𝑐𝑡
𝑡

1/𝜋
↔

sin 𝑓

𝑓

• So, by the duality property, we get the pair

• 𝜋 𝑟𝑒𝑐𝑡
𝑓

1/𝜋
↔

sin 𝑡

𝑡

• i.e.  𝐺 𝑓 = 𝜋 𝑟𝑒𝑐𝑡(
𝑓

1/𝜋
) , (See figure next)

• ෠𝐺 𝑓 = −𝑗𝑠𝑔𝑛 𝑓 𝐺 𝑓 =

ቊ
−𝑗𝜋 0 < 𝑓 < 1/2𝜋
𝑗𝜋 − 1/2𝜋 < 𝑓 < 0

• ො𝑔(𝑡) ∞−׬  =
∞ ෠𝐺 𝑓 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓

• 1/2𝜋−׬  =
0

𝑗𝜋 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓 −

0׬
1/2𝜋

𝑗𝜋 𝑒𝑗2𝜋𝑓𝑡 𝑑𝑓

• =  
1

2𝑡
1 − 𝑒−𝑗𝑡 −

1

2𝑡
𝑒𝑗𝑡 − 1

• =  
1

𝑡
−

1

𝑡

𝑒𝑗𝑡+𝑒−𝑗𝑡

2
=  

1−cos 𝑡

𝑡

6



Bandwidth of Signals and Systems: Lecture Outline

• Bandwidth Definitions
• Absolute Bandwidth
• 3-dB (half power points) Bandwidth
• The 95 %  (energy or power) Bandwidth
• Equivalent Rectangular Bandwidth
• Null – to – Null Bandwidth
• Bounded Spectrum Bandwidth
• RMS Bandwidth 

• The Definition of Decibel 
• Bandwidth of Periodic Signals
• Time-Bandwidth Product

1



Bandwidth of Signals and Systems
• Definition: The amount of positive frequency band that a signal 𝑔(𝑡) occupies is called the 

bandwidth of the signal. It provides a measure of the extent of significant frequency content of 
the signal.

• Definition: A signal g(t) is said to be (absolutely) band-limited to B Hz if

G(f) = 0                   for |f| >B

• Definition: A signal g(t) is said to be (absolutely) time-limited if 

g(t) = 0                     for |t| >T

• Theorem: An absolutely band-limited waveform cannot be absolutely time-limited and vice 
versa, i.e., a signal g(t) cannot be both time-limited and bandlimited.

• In general, there is an inverse relationship between the signal bandwidth and the time duration. 
The bandwidth and the time duration are related through a relation, called the time bandwidth 
product, of the form (will investigate this more in the next lecture)

(𝑩𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉)(𝑻𝒊𝒎𝒆 𝑫𝒖𝒓𝒂𝒕𝒊𝒐𝒏) ≥ 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕

• The value of the constant depends on the way we define the bandwidth and the time duration. 
Two possible values of the constant, that we will encounter in this chapter, are ½ (for the 

equivalent rectangular bandwidth) and 
1

4𝜋
(for the root mean square bandwidth). 2



Bandwidth of Signals and Systems

• Theorem: An absolutely band-limited waveform cannot be absolutely time-
limited and vice versa, i.e., a signal g(t) cannot be both time-limited and 
bandlimited.

• We have earlier seen examples that support this theorem. For example, the 
delta function, which has an almost zero time duration, has a Fourier 
transform which extends uniformly over all frequencies (infinite bandwidth).

• Also, a constant value in the time domain (a dc) has a Fourier transform, which 
is an impulse in the frequency domain at the origin. These are shown below.

3



Bandwidth of Signals and Systems

• Definition of a baseband signal: A baseband signal is one for which most of the energy is 
contained within a band centered around the zero frequency and negligible elsewhere. 
Another term synonymous with baseband is low-pass. In the communication systems, the 
message to be transmitted is a baseband signal.

• Definition of a band-pass signal: A band-pass signal is one for which the energy is 
concentrated around some high frequency carrier 𝑓0 and negligible elsewhere. This type of 
signal will arise in this course when the baseband message signal 𝑚(𝑡) modulates a high 
frequency carrier 𝑐(𝑡) to produce the modulated signal 𝑠(𝑡).

4



The Definition of Decibel 
• Consider a system with input voltage 𝑣𝑖 and output voltage 𝑣𝑜

• The power gain of the system is defined as:

𝐺 =
𝑃𝑜

𝑃𝑖

• In a logarithmic scale, the gain is defined as

𝐺 = 10𝑙𝑜𝑔10
𝑃𝑜

𝑃𝑖
dB.

• If 𝑃𝑜 > 𝑃𝑖, G > 0. Hence, the output signal possesses more power than the input. 
However, if 𝑃𝑜 < 𝑃𝑖, the system introduces attenuation or loss. In this case G < 0. 

• If the input and output powers are taken relative to the same reference resistance R, then

G = 10 log
𝑉𝑜

2

𝑅

𝑉𝑖
2

𝑅

= 20𝑙𝑜𝑔10
𝑉𝑜

𝑉𝑖
dB

• For a transfer function H(f), G becomes

G = 20𝑙𝑜𝑔10 𝐻(𝑓) dB
5



Definitions of Bandwidth: Absolute Bandwidth

• Here, the Fourier transform of a signal is non-zero only within a certain 
frequency band. 

• Low-pass Signals: If G(f) = 0 for |f| > B, then g(t) is  absolutely band-limited to 
B Hz and B.W = B

• Bandpass Signals: When G(f) ≠ 0 for f 1< |f |< f2 , then the absolute bandwidth 
is B.W= f2 - f 1.

B- B f2f1

6

100% of the total energy/power is 
contained within this bandwidth



Definitions of Bandwidth: 3-dB (half power points) Bandwidth

• The range of frequencies from 0 to some frequency B at which |G(f)| drops to 
1

√2
of its maximum value (for a low pass signal). 

• As for a band pass signal, the B.W = f2 – f1.

|G(f)| 

𝐺 0

𝐺 0 / 2

B- B

G = 20 𝑙𝑜𝑔10
𝐺 𝐵

𝐺 0
= 20 𝑙𝑜𝑔10

𝐺 0 / 2

𝐺 0
= −20𝑙𝑜𝑔10 2 = −3 𝑑𝐵

0

|G(f)| 

𝐺 𝑓𝑐

𝐺 𝑓𝑐 / 2

𝑓𝑐 𝑓2𝑓1 7frequencyfrequency



Definitions of Bandwidth: The 95 %  (energy or power) Bandwidth

• Here, the B.W is defined as the band of frequencies where the area under the 
energy spectral density (or power spectral density) is at least 95% (or 99%) of 
the total area.

• Total Signal Energy 𝐸 = ∞−׬
∞
|𝐺 𝑓 |2 𝑑𝑓 0׬2 =

∞
|𝐺 𝑓 |2𝑑𝑓 = ∞−׬

∞
|𝑔 𝑡 |2 𝑑𝑡

• The 95% energy bandwidth B should satisfy the relationship

• 𝐵−׬
𝐵
|𝐺 𝑓 |2𝑑𝑓 =  0.95 ∞−׬

∞
|𝐺 𝑓 |2 𝑑𝑓 = 0.95 𝐸

• 𝑩−׬
𝑩
|𝑮 𝒇 |𝟐𝒅𝒇 = 𝟎. 𝟗𝟓 𝑬 𝐺 0 2

B- B 0

𝐺 𝑓 2

𝑨𝒓𝒆𝒂 = 𝟎. 𝟗𝟓𝑬

8frequency



Definitions of Bandwidth: Equivalent Rectangular Bandwidth

• It is the width of a fictitious rectangular spectrum such that the power in that 
rectangular band is equal to the energy associated with the actual spectrum. 
Let 𝐵𝑒𝑞 be the equivalent rectangular bandwidth. To find 𝐵𝑒𝑞 we set

𝐺 0 2

Beq- Beq 0

𝐺 𝑓 2

Area under fictitious rectangle = Total Signal Energy E

|G(0)|2*2Beq ∞−׬=
∞
|𝐺 𝑓 |2𝑑𝑓 = 𝐸

|G(0)|2*2Beq = 20׬
∞
|𝐺 𝑓 |2𝑑𝑓

𝑩𝒆𝒒 =
𝟏

|𝑮 𝟎 |𝟐
𝟎׬
∞
|𝑮 𝒇 |𝟐𝒅𝒇

Area of red rectangle = Area 
under the blue curve

9frequency



Definitions of Bandwidth: Null – to – Null Bandwidth

• For baseband signals, the null bandwidth is taken to be the band from zero to 
the first null in the envelope of the magnitude spectrum.

• For example, consider the rectangular pulse g(t), for which the Fourier 
transform is G(f). Note that 

• 𝑟𝑒𝑐𝑡
𝑡

𝜏
→ τ sincfτ = τ

𝑠𝑖𝑛𝜋𝑓𝜏

𝜋𝑓𝜏
.

• The zero crossings occur when sin(πfτ) = 0

• πfτ = nπ  →  f =  
𝑛

τ
; n = 1,2, … The smallest value of 𝑛 = 1, gives

• 𝑵𝒖𝒍𝒍 𝑩𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉 =
𝟏

𝝉
.

• For a band pass signal, 

B.W= f2 – f1

10



Definitions of Bandwidth: Bounded Spectrum Bandwidth

• The range of frequencies from 0 to some frequency B at which |G(f)| drops to 
, say, −50𝑑𝐵 relative to its maximum value (for a low pass signal). 

|G(f)| 
𝐺 0

−50 𝑑𝐵

B- B

−𝟓𝟎 𝒅𝑩 = 𝟐𝟎 𝒍𝒐𝒈𝟏𝟎
𝑮 𝑩

𝑮 𝟎

0 frequency
11



Definitions of Bandwidth: RMS bandwidth 

• The RMS bandwidth of a signal g(t) is defined as

• 𝐵𝑟𝑚𝑠 =
∞−׬
∞

𝑓2|𝐺 𝑓 |2df

∞−׬
∞

|𝐺 𝑓 |2df
=

∞−׬
∞

𝑓2|𝐺 𝑓 |2df

𝐸𝑔

• In an analogous way, the corresponding RMS duration of g(t) is

• 𝑇𝑟𝑚𝑠 =
∞−׬
∞

𝑡2|𝑔 𝑡 |2dt

∞−׬
∞

|𝑔 𝑡 |2dt
=

∞−׬
∞

𝑡2|𝑔 𝑡 |2dt

𝐸𝑔

• (here g(t) is assumed to be centered around the origin).

• Remark: The time bandwidth product is (𝑻𝒓𝒎𝒔)(𝑩𝒓𝒎𝒔) ≥
𝟏

𝟒𝝅
(the proof is 

beyond the scope of this presentation).
12



Example: 95% Energy Bandwidth of the Exponential Pulse

• Find the 95% energy bandwidth for the 
exponential pulse 𝑔 𝑡 = 𝐴𝑒−𝛼𝑡 𝑢(𝑡).

• Solution: The Fourier transform of g(t) is

𝐺 𝑓 =
𝐴

𝛼+𝑗2𝜋𝑓

• The total energy in g(t) (calculated in the time 
domain) is 

• 𝐸𝑔 = 0׬
∞
𝑔(𝑡) 2 𝑑𝑡 = 0׬

∞
𝐴2𝑒−2𝛼𝑡 𝑑𝑡 =

𝐴2

2𝛼

• Let B be the 95% energy bandwidth, then the 
energy contained within B is

• 𝐸𝐵 = 𝐵−׬
𝐵
𝐺(𝑓) 2 𝑑𝑓 = 𝐵−׬

𝐵 𝐴2

(𝛼2+ 2𝜋𝑓 2)
𝑑𝑓

• 𝐸𝐵 =
2𝐴2

2𝜋𝛼
𝑡𝑎𝑛−1

2𝜋𝐵

𝛼

• B should be chosen such that it satisfies 
the condition

• 𝐸𝐵 = 0.95𝐸𝑔
𝟐𝑨𝟐

𝟐𝝅𝜶
𝒕𝒂𝒏−𝟏

𝟐𝝅𝑩

𝜶
= 𝟎. 𝟗𝟓

𝑨𝟐

𝟐𝜶

• The 95% energy bandwidth is, therefore

𝑩𝟗𝟓% = 𝟐𝜶

𝐺 0 2

B- B 0

𝐺 𝑓 2

𝑨𝒓𝒆𝒂 = 𝟎. 𝟗𝟓𝑬

13frequency



Example: 3-dB Bandwidth of the First Order RC Circuit
• Example: Find the 3-dB bandwidth of a first 

order RC low pass filter

• Solution: The transfer function of the circuit is

• 𝐻 𝑓 =

1

𝑗2𝜋𝑓𝐶

𝑅+
1

𝑗2𝜋𝑓𝐶

=
1

1+𝑗2𝜋𝑓𝑅𝐶

• The magnitude of 𝐻 𝑓 is

• |𝐻 𝑓 | =
1

1+ 2𝜋𝑓𝑅𝐶 2

• The 3-dB bandwidth is some frequency 𝑓 = 𝐵
at which |𝐻 𝑓 | drops to 1/ 2 of its maximum 
value. Note that the maximum value of |𝐻 𝑓 |
is 1 and occurs at 𝑓 = 0. Therefore, B should 
satisfy 

• 𝐻 𝐵 =
1

1+ 2𝜋𝐵𝑅𝐶 2
=

1

2

• From this relationship, we notice that at 
the 3-dB point,   2𝜋𝐵𝑅𝐶 = 1

• Therefore, 𝑩 =
𝟏

𝟐𝝅𝑹𝑪

14

|G(f)| 

𝐺 0

𝐺 0 / 2

B- B 0 frequency



Example: Bandwidth of a Periodic Rectangular Signal

• Example: Find the 93% power bandwidth for the periodic square function 

define over one period as     𝑔 𝑡 = ൝
2𝐴,

−𝑇0

4
≤ 𝑡 ≤

𝑇0

4

−𝐴, 𝑜. 𝑤

• Solution: The average power, computed using the time average, is 

• 𝑃𝑎𝑣 =
1

𝑇0
0׬
𝑇0 𝑔(𝑡) 2 𝑑𝑡 =

1

𝑇0
4𝐴2

𝑇0

2
+ 𝐴2

𝑇0

2
=

5𝐴2𝑇0

2𝑇0
=

5𝐴2

2
⇒ 𝑷𝒂𝒗 = 𝟐. 𝟓𝑨𝟐

• Also, by using the Parseval’s theorem, the average power can be computed as:

• 𝑃𝑎𝑣 = 𝐶0
2 + 2σ𝑛=1

∞ 𝐶𝑛
2

• We recall that the Fourier coefficients for this signal were found in the lecture 
on Fourier series. Using these values, we get

• 𝑃𝑎𝑣 =
𝐴

2

2
+ 2σ𝑛=1

∞ 3𝐴 2

𝑛𝜋 2 ⇒ 𝑷𝒂𝒗 =
𝑨𝟐

𝟒
+ 𝟐𝑨𝟐σ𝒏=𝟏

∞ 𝟑 𝟐

𝒏𝝅 𝟐

15



Example: Bandwidth of a Periodic Rectangular Signal

• 𝑃𝑎𝑣 =
𝐴

2

2
+ 2σ𝑛=1

∞ 3𝐴 2

𝑛𝜋 2 ⇒ 𝑷𝒂𝒗 =
𝑨𝟐

𝟒
+ 𝟐𝑨𝟐σ𝒏=𝟏

∞ 𝟑 𝟐

𝒏𝝅 𝟐 = 𝟐. 𝟓𝑨𝟐

• Let us take n = 1, then the power in the DC and the fundamental frequency is

• 𝑃1 = 𝐴2 0.25 + 2
9

𝜋2
= 2.073𝐴2 ⇒

𝑃1

𝑃𝑎𝑣
=

2.073𝐴2

2.5𝐴2
= 82.95%

• The fraction of power in these two terms relative to the total average power is only 82.95%. The 
93% power limit is not yet reached. So, let us add one more term.

• When n = 3, the power in the DC, the fundamental term, and the third harmonic is

• 𝑃3 = 𝐴2 0.25 + 2
32

𝜋2
+

32

32𝜋2
= 2.276𝐴2 ⇒

𝑃3

𝑃𝑎𝑣
=

2.276𝐴2

2.5𝐴2
= 91.05%.

• The fraction of power in these three terms relative to the total average power is now 91.05%. Still, 
the 93% power limit is not reached yet. So, let us add one more term.

• For n = 5, the power in the DC, the fundamental term, the third harmonic, and the fifth harmonic is

• 𝑃5 = 𝐴2 0.25 + 2
3

𝜋

2
+

3

3𝜋

2
+

3

5𝜋

2
= 2.349𝐴2 ⇒

𝑃5

𝑃𝑎𝑣
=

2.349𝐴2

2.5𝐴2
= 93.97%.

• With n=5, the 93% power limit has been reached. Therefore, the 93% power B.W  is  𝑩𝟗𝟑% = 𝟓𝒇𝟎.
16



Time-Bandwidth Product
• One more time, to illustrate the time – bandwidth 

product ((𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ)(𝑇𝑖𝑚𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) ≥
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ), consider the equivalent rectangular 
bandwidth defined earlier as

• 𝐵𝑒𝑞 =
∞−׬
∞

|𝐺 𝑓 |2df

2|𝐺 0 |2

• Analogous to this definition, we define an equivalent 
rectangular time duration as

• 𝑇𝑒𝑞 =
∞−׬)

∞
|𝑔 𝑡 |𝑑𝑡)

2

∞−׬
∞

|𝑔 𝑡 |2dt

• The time bandwidth product is

• 𝐵𝑒𝑞𝑇𝑒𝑞 =
∞−׬
∞

|𝐺 𝑓 |2df

2|𝐺 0 |2

∞−׬)
∞

|𝑔 𝑡 |𝑑𝑡)
2

∞−׬
∞

|𝑔 𝑡 |2dt

• Note that ׬
−∞

∞
|𝑔 𝑡 |2 dt ׬ =

−∞

∞
|𝐺 𝑓 |2 df; 

• Rayleigh energy theorem. 

• Note also that   𝐺 0 = ׬
−∞

∞
𝑔 𝑡 𝑑𝑡. 

• Using these two relations, we get

• 𝑩𝒆𝒒𝑻𝒆𝒒 =
𝟏

𝟐

∞−׬)
∞

|𝒈 𝒕 |𝒅𝒕)
𝟐

| ∞−׬
∞

𝒈 𝒕 𝐝𝐭|𝟐

• Case 1:  When g(t) is positive for all time t, 
then |g(t)| = g(t) and 𝐵𝑒𝑞𝑇𝑒𝑞 becomes

• 𝐵𝑒𝑞𝑇𝑒𝑞 =
1

2

• Case 2 : For a general g(t) that can take on 
positive as well as negative values, 𝐵𝑒𝑞𝑇𝑒𝑞
satisfies the inequality

• 𝐵𝑒𝑞𝑇𝑒𝑞 ≥
1

2

• Note : For 𝐵𝑟𝑚𝑠 and 𝑇𝑟𝑚𝑠 , the time –
bandwidth product satisfies the inequality     

𝐵𝑟𝑚𝑠𝑇𝑟𝑚𝑠 ≥
1

4𝜋 17



Example: Bandwidth of a Trapezoidal Signal

• Example: Find the equivalent rectangular 
bandwidth,𝐵𝑒𝑞, for the trapezoidal pulse 
shown.

• Solution:

• 𝑇𝑒𝑞 =
∞−׬)

∞
|𝑔 𝑡 |𝑑𝑡)

2

∞−׬
∞

|𝑔 𝑡 |2dt

• ∞−׬
∞

𝑔(𝑡) 𝑑𝑡 = 𝐴 ( 𝑡𝑎 + 𝑡𝑏)

• ∞−׬
∞

𝑔(𝑡) 2𝑑𝑡 =
2𝐴2

3
( 2𝑡𝑎 + 𝑡𝑏)

• 𝑇𝑒𝑞 =
3

2

𝑡𝑎+𝑡𝑏
2

2𝑡𝑎+𝑡𝑏

• 𝐵𝑒𝑞 =
0.5

𝑇𝑒𝑞
=

2𝑡𝑎+𝑡𝑏

3 𝑡𝑎+𝑡𝑏
2. 

• Remark: Note that using this 
method we were able to 
determine the signal bandwidth 
without the need to go through 
the Fourier transform.

18
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Pulse Response and Rise-time
• In this lecture, we will investigate the relationship that should exist between the pulse 

bandwidth and the channel bandwidth. As we know, the rectangular pulse contains 
significant high frequency components. When that pulse is passed through a band-limited 
channel, the channel  will alter the shape of the input resulting in linear distortion 
(amplitude and phase) 

• This subject is of particular importance, especially, when we study the transmission of data 
over band-limited channels. In the simplest form, a binary digit 1 may be represented by a 
pulse , 0 ≤ 𝑡 ≤ 𝑇𝑏 , while binary digit 0 may be represented by the negative pulse −𝐴,
0 ≤ 𝑡 ≤ 𝑇𝑏. Therefore, in order to retrieve the transmitted data, the channel bandwidth 
must be wide enough to accommodate the transmitted data.

• To convey this idea in a simple form, we first consider the response of a first order low pass 
filter to a unit step function and then to a pulse.

Channel
H(f)

B.W= 𝑩𝒄𝒉

𝒙 𝒕 y 𝒕

𝒀 𝒇𝑿(𝒇)

1

𝑩𝒙



Step Response of a First Order System

• Let 𝑥 𝑡 = 𝑢(𝑡) be applied to a first 
order RC circuit. This first order filter is 
a fair representation of a low-pass 
communication channel

• The system differential equation is

• 𝑥 𝑡 = 𝑅𝑖 𝑡 + 𝑔 𝑡 = 𝑅𝐶
𝑑𝑔(𝑡)

𝑑𝑡
+ 𝑔(𝑡)

• where g(t) is the channel output.

• Now let 𝑥 𝑡 = 𝑢(𝑡). The system D.E. 
becomes 𝑥 𝑡

• 𝑅𝐶
𝑑𝑔(𝑡)

𝑑𝑡
+ 𝑔 𝑡 = 𝑢(𝑡)

• The solution to this first order system is

• 𝑔 𝑡 = (1 − 𝑒−𝑡/𝑅𝐶)𝑢(𝑡)

• The 3- dB bandwidth of the channel (was 
derived in a previous example in this 

chapter) is   𝑩𝒄𝒉 =
𝟏

𝟐𝝅𝑹𝑪

• The output 𝑔 𝑡 , expressed in terms of 
𝐵𝑐ℎ becomes

𝒈 𝒕 = (𝟏 − 𝒆−𝟐𝝅𝑩𝒄𝒉𝒕)𝒖(𝒕)x(t) = u(t) g(t)

2



Step Response and Rise-time of a First Order System

• Define the difference between the input 
and the output as

• 𝒆 𝒕 = 𝒖 𝒕 − 𝒈 𝒕 = 𝒆−𝟐𝝅𝑩𝒄𝒉𝒕

• Note that 𝑒 𝑡 decreases as 𝐵𝑐ℎ increases. 
This means that as the channel bandwidth 
increases, the output becomes closer and 
closer to the input.

• In the ideal case, when the channel 
bandwidth becomes infinity, the output 
becomes a step function.

• In essence, to reproduce a step function 
(or a rectangular pulse), a channel with 
infinite bandwidth is needed.

3



Step Response and Rise-time of a First Order System
• The rise-time is a measure of the speed 

of rise of the output of a system due to 
step function applied at its input.

• One common measure is the 10-90 % 
rise-time, defined as the time it takes for 
the output to rise between 10% to 90% 
of the final steady state value when a 
unit step function is applied to the 
system input.

• The 10% - 90% rise-time for the first 
order RC circuit considered above is

𝑻𝒓 = 𝒕𝟐 − 𝒕𝟏 =
𝟎. 𝟑𝟓

𝑩𝒄𝒉

• Exercise: For the system above, verify 

that the rise-time is given as 𝑇𝑟 =
0.35

𝐵𝑐ℎ
.

• From this result, we conclude that 
increasing the bandwidth of the channel 
will decrease the rise-time, implying a 
faster response.

4



Pulse Response of a First Order System
• It is the response of the circuit to a pulse 

of duration τ. For the same RC circuit, 
considered above, let us apply the pulse

• 𝑥 𝑡 = 𝑢 𝑡 − 𝑢 𝑡 − 𝜏

• Using the linearity and time invariance 
properties, the output due to the pulse 
can be obtained from the step response 
g(t) as

• y 𝑡 = 𝑔 𝑡 − 𝑔 𝑡 − 𝜏

• 𝑦 𝑡 =
0 𝑡 < 0
1 − 𝑒−2𝜋𝐵𝑐ℎ𝑡 0 < 𝑡 < τ
1 − 𝑒−2𝜋𝐵𝑐ℎ𝜏 𝑒−2𝜋𝐵𝑐ℎ(𝑡−𝜏) t > τ

• This response is sketched in the figure below.

• From the equation above, we observe that the 
output 𝑦 𝑡 approximates the input 𝑥 𝑡
provided that ( y 𝜏 > 0.99)

𝑩𝒄𝒉𝝉 ≥ 𝟏 or     𝑩𝒄𝒉 ≥
𝟏

𝝉

5



Pulse Response of a First Order System
• The figure below shows the Fourier 

transform of the input and the channel. 

• To reproduce the input, the channel 
bandwidth should be wider than the 
message bandwidth

• Y (f) = X(f) H(f)

• Y f ≃ X 𝑓

• If the channel bandwidth is much wider than the 
message bandwidth, then

6

|H(f)| 

H 0

H 0 / 2

Bch- Bch0 frequency

X(f)=τ sincfτ
H 𝒇 =

𝑨

𝟏+𝒋𝒇/𝑩𝒄𝒉

1/τ-1/τ

Ideal Channel

Null Bandwidth = 1/τ Channel Bandwidth = Bch



Relationship to data transmission

• In digital communication systems, data are transmitted at a rate of 𝑅𝑏 bits/sec. 

The time allocated for each bit is 𝜏 =
1

𝑅𝑏
. To enable the receiver to recognize 

the transmitted bit within its allocated slot and to prevent cross talk between 
neighboring time slots, we require that

𝑩𝒄𝒉 ≥
𝟏

𝝉
= 𝑹𝒃

• Result: the channel bandwidth in binary digital communication systems should 
be larger than the rate of the data sent over the channel.

7



Autocorrelation and Spectral Density

• In this lecture, we define the autocorrelation function of a signal. Also, we 
present the relationship between the autocorrelation function and the 
power/energy spectral density. 

• In this discussion, we restrict our attention to real signals. First, we consider 
power signals and then energy signals.

• Definition: The autocorrelation function of a signal 𝑔 𝑡 is a measure of 
similarity between 𝑔 𝑡 and a delayed version of 𝑔 𝑡 .

0 𝑻𝟎−𝑻𝟎

g 𝒕

1



Correlation and Spectral Density

• Autocorrelation function of a periodic power signal

• The autocorrelation function of a periodic power signal 𝑔 𝑡 with period T0 is

𝑹𝒈 𝝉 =
𝟏

𝑻𝟎
𝟎׬
𝑻𝟎𝒈 𝒕 𝒈 𝒕 − 𝝉 𝒅𝒕

0 𝑻𝟎−𝑻𝟎

g 𝒕

𝟐𝑻𝟎

𝑻𝟎 + 𝝉−𝑻𝟎 + 𝝉

g 𝒕 − 𝝉

𝟐𝑻𝟎 + 𝝉𝝉

Properties of 𝑅𝑔 𝜏

• 𝑅𝑔 𝜏 = 0 =
1

𝑇0
0׬
𝑇0 𝑔 𝑡 2𝑑𝑡;   is the 

total average signal power.
• 𝑅𝑔 𝜏 is an even function of 𝜏, i.e., 

𝑅𝑔 𝜏 = 𝑅𝑔 −𝜏 .

𝑻𝟎0

2



Correlation and Spectral Density

Properties of 𝑅𝑔 𝜏 :   𝑅𝑔 𝜏 =
1

𝑇0
0׬
𝑇0 𝑔 𝑡 𝑔 𝑡 − 𝜏 𝑑𝑡

• 𝑅𝑔 𝜏 has a maximum (positive) magnitude at τ = 0 , i.e. |𝑅𝑔 𝜏 | ≤ 𝑅𝑔 0 .

Proof of this property: 
Consider the quadratic quantity

𝑔 𝑡 ± 𝑔 𝑡 + 𝜏 2 ≥ 0

Taking the time average ( < y t >
𝟏

𝑻𝟎
𝟎׬
𝑻𝟎 𝒚 𝒕 𝒅𝒕 ) of both sides, and expanding, we get 

< 𝑔 𝑡 ± 𝑔 𝑡 + 𝜏 2 > ≥ 0
< 𝑔 𝑡 2 > +< 𝑔 𝑡 + 𝜏 2 > ± 2 < 𝑔 𝑡 𝑔 𝑡 + 𝜏 > ≥ 0

But, < 𝑔 𝑡 2 > = 𝑅𝑔 0 and 𝑅𝑔 0 = < 𝑔 𝑡 + 𝜏 2 > as well. 

Combining these results, we get:        −𝑹𝒈 𝟎 < 𝑹𝒈 𝝉 < 𝑹𝒈(𝟎).

3



Correlation and Spectral Density

• Theorem: The autocorrelation function 𝑅𝑔 𝜏 of a periodic signal g 𝑡 is also periodic with 
the same period T0.

• Proof:  𝑅𝑔 𝜏 =
1

𝑇0
0׬
𝑇0 𝑔 𝑡 𝑔 𝑡 − 𝜏 𝑑𝑡

• Expand 𝑔(𝑡) in a complex Fourier series  𝑔 𝑡 = σ𝑛=−∞
∞ 𝐶𝑛𝑒

𝑗𝑛𝜔0𝑡.  

• Form the delayed signal 𝑔 𝑡 − 𝜏 = σ𝑚=−∞
∞ 𝐶𝑚𝑒

𝑗𝑚𝜔0(𝑡−𝜏)

• Perform the integration over a complete period 𝑇0 , making use of orthogonality. The result is:

• 𝑹𝒈 𝝉 = σ𝒏=−∞
∞ 𝑫𝒏𝒆

𝒋𝒏𝝎𝟎𝝉 = σ𝒏=−∞
∞ |𝑪𝒏|

𝟐𝒆𝒋𝒏𝝎𝟎𝝉 ; Fourier series expansion of 𝑅𝑔 𝜏 .

• 𝐷𝑛 = |𝐶𝑛|
2 Fourier coefficients of 𝑅𝑔 𝜏 ; 𝐶𝑛 Fourier coefficients of 𝑔 𝑡 .

• Note that the real Fourier coefficients 𝐷𝑛 of 𝑅𝑔 𝜏 are related to the complex Fourier 
coefficients 𝐶𝑛 of 𝑔 𝑡 by the relation 𝐷𝑛 = |𝐶𝑛|

2.

• The Fourier transform of the autocorrelation function is 

• 𝑺𝒈 𝒇 = 𝕴 𝑹𝒈(𝝉) = σ𝒏=−∞
∞ 𝑪𝒏

𝟐𝜹(𝒇 − 𝒏𝒇𝟎) ; Discrete spectrum

• This is, of course, the power spectral density of 𝑔 𝑡 , which we considered earlier.
4



Autocorrelation of a periodic sinusoidal signal

• Example: Find the auto-correlation function and power spectral density of the 
sine signal 𝑔 𝑡 = 𝐴cos(2𝜋𝑓0𝑡 + 𝜃), where 𝐴 and 𝜃 are constants.

• Solution: As we know, 𝑔 𝑡 is a periodic signal. Therefore, we find 𝑅𝑔 𝜏 using the 
definition

• 𝑅𝑔 𝜏 =
1

𝑇0
0׬
𝑇0 𝑔 𝑡 𝑔 𝑡 − 𝜏 𝑑𝑡

• 𝑅𝑔 𝜏 =
1

𝑇0
0׬
𝑇0 𝐴cos(2𝜋𝑓0𝑡 + 𝜃)𝐴cos(2𝜋𝑓0𝑡 − 2𝜋𝑓0𝜏 + 𝜃)𝑑𝑡

• 𝑅𝑔 𝜏 =
𝐴2

2𝑇0
0׬
𝑇0[cos 4𝜋𝑓0𝑡 − 2𝜋𝑓0𝜏 + 2𝜃 + cos 2𝜋𝑓0𝜏 ]𝑑𝑡

• 𝑅𝑔 𝜏 =
𝐴2

2𝑇0
[0 + cos 2𝜋𝑓0𝜏 𝑇0]

• 𝑅𝑔 𝜏 =
𝐴2

2
cos 2𝜋𝑓0𝜏 ; Periodic with period 𝑇0.

• 𝑆𝑔 𝑓 =
𝐴2

4
{𝛿 𝑓 − 𝑓0 + 𝛿 𝑓 + 𝑓0 }; power spectral density 5



Correlation and Spectral Density

Autocorrelation function of energy signals

• When g(t) is an energy signal, 𝑅𝑔 𝜏 is defined as

𝑹𝒈 𝝉 = ∞−׬
∞
𝒈 𝒕 𝒈 𝒕 − 𝝉 𝒅𝒕

Properties of R(τ)

• 𝑅𝑔 𝜏 = 0 = ∞−׬
∞

𝑔 𝑡 2𝑑𝑡;   is the total signal energy.

• 𝑅𝑔 𝜏 is an even function of 𝜏, i.e., 𝑅𝑔 𝜏 = 𝑅𝑔 −𝜏 .

• 𝑅𝑔 𝜏 has a maximum (positive) magnitude at τ = 0 , i.e. |𝑅𝑔 𝜏 | ≤ 𝑅𝑔 0 .

6



Correlation and Spectral Density
Theorem: The autocorrelation function of an energy signal and its energy spectral density (a 

continuous function of frequency) are Fourier transform pairs, i.e., 

• 𝑆𝑔 𝑓 = ℑ 𝑅𝑔(𝜏) = ∞−׬
∞

𝑅𝑔 𝜏 𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏;

• 𝑅𝑔 𝜏 = ∞−׬
∞

𝑆𝑔 𝑓 𝑒𝑗2𝜋𝑓𝜏𝑑𝑓.

Proof: The autocorrelation function is defined as:

• 𝑅𝑔 𝜏 = ∞−׬
∞

𝑔 𝜆 𝑔 𝜆 − 𝜏 𝑑 𝜆

• In this integral we have replaced t by 𝜆 (both are dummy variables of integration). With this 
substitution, we can rewrite the integral as

• 𝑅𝑔 𝜏 = ∞−׬
∞

𝑔 𝜆 𝑔 −(𝜏 − 𝜆 )𝑑 𝜆

• One can realize that 𝑅𝑔 𝜏 is nothing but the convolution of 𝑔 𝜏 and 𝑔 −𝜏 . That is,

• 𝑅𝑔 𝜏 = 𝑔 𝜏 ∗ 𝑔 −𝜏

• Taking the Fourier transform of both sides, we get

• 𝐹{𝑅𝑔 𝜏 } = 𝐺 𝑓 𝐺∗ 𝑓 , Therefore 𝑺𝒈 𝒇 = 𝕴 𝑹𝒈(𝝉) = |𝑮(𝒇)|𝟐. 7



Example: Autocorrelation of a non-periodic signal

• Example: Determine the autocorrelation function of the sinc pulse

𝑔 𝑡 = 𝐴𝑠𝑖𝑛𝑐2𝑊𝑡.

• Solution: Using the duality property of the Fourier transform, we deduce that

• 𝐺(𝑓) =
𝐴

2𝑊
𝑟𝑒𝑐𝑡(

𝑓

2𝑊
)

• The energy spectral density of 𝑔 𝑡 is

• 𝑆𝑔 𝑓 = |𝐺(𝑓)|2 = (
𝐴

2𝑊
)2𝑟𝑒𝑐𝑡(

𝑓

2𝑊
)

• Taking the inverse Fourier transform, we get the autocorrelation function

• 𝑅𝑔 𝜏 =
𝐴2

2𝑊
𝑠𝑖𝑛𝑐2𝑊𝜏

8

𝑟𝑒𝑐𝑡
𝑡

𝑇
↔ 𝑇𝑠𝑖𝑛𝑓𝑇

𝑠𝑖𝑛𝑐2𝑊𝑡 ↔
1

2𝑊
𝑟𝑒𝑐𝑡(

𝑓

2𝑊
)



Autocorrelation function of the rectangular pulse

• Example: Find the autocorrelation function of the pulse 𝑔 𝑡 = 𝑟𝑒𝑐𝑡
𝑡−0.5𝑇

𝑇
, 𝑇 = 1.

• Solution: As we saw earlier, this pulse is an energy signal and therefore, we can find its 

𝑅𝑔 𝜏 as:     𝑅𝑔 𝜏 = 𝜏׬
1
𝐴 (𝐴)𝑑𝑡 = A2 (1-τ)  ;  0 < τ  < 1

• Using the even symmetry property of the autocorrelation function, we can find 𝑅𝑔 𝜏 for -
ve values of τ as:

• 𝑅𝑔 𝜏 = 𝐴2(1 + 𝜏) ;  -1< τ <0

• This function is sketched below. Note that that the maximum value occurs at τ = 0 and that 
g(t) and g(t-τ) become uncorrelated for τ = 1 sec, which is the duration of the pulse.

• The energy spectral density is  𝑆𝑔 f = ℑ 𝑅𝑔 𝜏 = 𝐴2 𝑠𝑖𝑛𝑐𝑓 2

τ 1+τ
9
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